Pattern avoidance in alternating permutations and tableaux ( extended abstract )
نویسنده
چکیده
We give bijective proofs of pattern-avoidance results for a class of permutations generalizing alternating permutations. The bijections employed include a modified form of the RSK insertion algorithm and recursive bijections based on generating trees. As special cases, we show that the sets A2n(1234) and A2n(2143) are in bijection with standard Young tableaux of shape 〈3〉. Alternating permutations may be viewed as the reading words of standard Young tableaux of a certain skew shape. In the last section of the paper, we study pattern avoidance in the reading words of standard Young tableaux of any skew shape. We show bijectively that the number of standard Young tableaux of shape λ/μ whose reading words avoid 213 is a natural μ-analogue of the Catalan numbers. Similar results for the patterns 132, 231 and 312. Résumé. Nous présentons des preuves bijectives de résultats pour une classe de permutations à motifs exclus qui généralisent les permutations alternantes. Les bijections utilisées reposent sur une modification de l’algorithme d’insertion “RSK” et des bijections récursives basées sur des arbres de génération. Comme cas particuliers, nous montrons que les ensembles A2n(1234) et A2n(2143) sont en bijection avec les tableaux standards de Young de la forme 〈3〉. Une permutation alternante peut être considérée comme le mot de lecture de certain skew tableau. Dans la dernière section de l’article, nous étudions l’évitement des motifs dans les mots de lecture de skew tableaux genéraux. Nous montrons bijectivement que le nombre de tableaux standards de forme λ/μ dont les mots de lecture évitent 213 est un μ-analogue naturel des nombres de Catalan. Des résultats analogues sont valables pour les motifs 132, 231 et 312. Resumen. Presentamos pruebas biyectivas de resultados de “evasión de patrones” para una clase de permutaciones que generalizan permutaciones alternantes. Las biyecciónes utilizadas incluyen una modificación del algoritmo de inserción de RSK y una biyección recursiva basada en árboles generatrices. Mostramos, como casos especiales, que los conjuntos A2n(1234) y A2n(2143) están en biyección con los tableaux de Young estándares de forma 〈3〉. Las permutaciones alternantes pueden ser entendidas como palabras de lectura de tableaux de Young estándares de cierta forma sezgada. En la ultima sección del articulo, expandimos nuestro estudio al considerar evasión de patrones en las palabras de lectura de tableaux de Young estándares de cualquier forma sezgada. Mostramos biyectivamente que el número de tableaux de Young estándares de forma λ/μ cuyas palabras de lectura evitan 213 es un μ-anólogo de los números de Catalán y resultados similares para los patrones 132, 231 y 312.
منابع مشابه
Ascent-Descent Young Diagrams and Pattern Avoidance in Alternating Permutations
We investigate pattern avoidance in alternating permutations and an alternating analogue of Young diagrams. In particular, using an extension of Babson and West’s notion of shape-Wilf equivalence described in our recent paper (with N. Gowravaram), we generalize results of Backelin, West, and Xin and Ouchterlony to alternating permutations. Unlike Ouchterlony and Bóna’s bijections, our bijection...
متن کاملPattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux
We define a class Ln,k of permutations that generalizes alternating (up-down) permutations. We then give bijective proofs of certain pattern-avoidance results for this class. The bijections employed include are a modified form of the RSK insertion algorithm and a different bijection with RSK-like properties. As a special case of our results, we give two bijections between the set A2n(1234) of a...
متن کاملBeyond Alternating Permutations: Pattern Avoidance in Young Diagrams and Tableaux
We investigate pattern avoidance in alternating permutations and generalizations thereof. First, we study pattern avoidance in an alternating analogue of Young diagrams. In particular, we extend Babson-West’s notion of shape-Wilf equivalence to apply to alternating permutations and so generalize results of Backelin-West-Xin and Ouchterlony to alternating permutations. Second, we study pattern a...
متن کاملGenerating Trees and Pattern Avoidance in Alternating Permutations
We extend earlier work of the same author to enumerate alternating permutations avoiding the permutation pattern 2143. We use a generating tree approach to construct a recursive bijection between the set A2n(2143) of alternating permutations of length 2n avoiding 2143 and the set of standard Young tableaux of shape 〈n, n, n〉, and between the set A2n+1(2143) of alternating permutations of length...
متن کاملArc Permutations ( extended abstract )
Arc permutations and unimodal permutations were introduced in the study of triangulations and characters. In this paper we describe combinatorial properties of these permutations, including characterizations in terms of pattern avoidance, connections to Young tableaux, and an affine Weyl group action on them. Résumé. Les permutations arc et les permutations unimodales ont été introduites dans l...
متن کامل